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Abstract
The pair correlation functions of a fluid of long elongated molecules interacting
via the Gay–Berne pair potential are calculated using the Percus–Yevick integral
equation theory. Numerical accuracy has been examined by considering a
large number of spherical harmonic coefficients for each orientation-dependent
functions for a system of molecules having a length-to-breadth ratio equal to
4.4 at different densities and temperatures. The pair correlation functions of
the isotropic fluid found from the Percus–Yevick theory have been used in the
density-functional theory to locate the isotropic–nematic, isotropic–smectic A
and nematic–smectic A transitions. It is found that at low temperatures the fluid
freezes directly into the smectic A phase on increasing the density. The nematic
phase is found to stabilize in between the isotropic and smectic A phases only
at high temperatures and high densities. The calculated phase diagram is in
good qualitative agreement with computer simulation results.

1. Introduction

A system consisting of anisotropic molecules is known to exhibit liquid crystalline phases
in between the isotropic liquid and the crystalline solid. The liquid crystalline phases that
commonly occur in a system of long elongated molecules are nematic and smectic phases [1].
In the nematic phase the full translational symmetry of the isotropic fluid phase (denoted as
R3) is maintained, but the rotational symmetry O(3) or SO(3) (depending upon the presence
or absence of the centre of symmetry) is broken. In the simplest form of the axially symmetric
molecules the group SO(3) (or O(3)) is replaced by one of the uniaxial symmetry D∞h or
D∞. The phase possessing R3 ∧ D∞h (denoting the semi-direct product of the translational
group R3 and the rotational group D∞h) symmetry is known as the uniaxial nematic phase.

Smectic liquid crystals, in general, have a stratified structure with a long axis of molecules
parallel to each other in layers. This situation corresponds to partial breakdown of translational
invariance in addition to the breaking of the rotational invariance. Since a variety of molecular
arrangements are possible within each layer, a number of smectic phases are possible. The
simplest among them is the smectic A (SmA) phase. In this phase the centre of mass of
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molecules in a layer are distributed as in a two dimensional fluid, but the molecular axes are
on average along a direction normal to the smectic layer (i.e. the director n̂ is normal to the
smectic layer). The symmetry of the SmA phase is (R2 × Z) ∧ D∞h where R2 corresponds
to a two dimensional liquid structure and Z for a one dimensional periodic structure. The
other non-chiral and non-tilted smectic phase seen in a system of long elongated molecules
is the smectic Bh (SmBh) phase. In each smectic layer of the SmBh phase, the director is
parallel to the layer normal as in the SmA phase, and there is short-range positional but long
range bond-orientational hexagonal orders in the smectic plane. The azimuthally symmetrical
x-ray ring of SmA is replaced by a six-fold modulated diffused pattern [2]. The phase is thus
characterized by a D6h point group symmetry and is uniaxial like SmA.

All these phases, including that of the isotropic liquid and the crystalline solids, are
characterized by the average position and orientation of molecules and by the intermolecular
spatial and orientational correlations. The factor responsible for the existence of these
distinguishing features is the anisotropy in both the shape of the molecules and the attractive
forces between them. The relationship between the intermolecular interactions and the relative
stability of these phases is very intriguing and not yet fully understood. For a real system
one faces the problem of knowing the accurate intermolecular interaction as a function of
intermolecular separation and orientations. This is because the mesogenic molecules are so
complex that none of the methods used to calculate interactions between molecules can be
applied without drastic approximations. Consequently, one is forced to use phenomenological
descriptions, either as a straightforward model unrelated to any particular physical system,
or as a basis for a description by means of adjustable parameters between two molecules.
Since our primary interest here is to relate the phases formed and their properties to the
essential molecular factor responsible for the existence of liquid crystals, and not to calculate
the properties of any real system, the use of the phenomenological potential is justified. One
such phenomenological model which has attracted a lot of attention in computer simulations
is the one proposed by Gay and Berne [3].

In the Gay–Berne (GB) pair potential model, the molecules are viewed as rigid units with
axial symmetry. Each individual molecule i is represented by a centre-of-mass position ri

and an orientational unit vector êi which is in the direction of the main symmetry axis of the
molecule. The GB interaction energy between a pair of molecules (i, j) is given by

u(rij, êi, êj) = 4ε(êi, êj, r̂i j)(R−12 − R−6) (1.1)

where

R = ri j − σ(êi, êj, r̂i j) + σ0

σ0
. (1.2)

Here σ0 is a constant defining the molecular diameter, ri j is the distance between the centre of
mass of molecules i and j and r̂i j = ri j/|ri j | is a unit vector along the centre–centre vector
ri j = ri − r j . σ(êi, êj, r̂i j) is the distance (for given molecular orientation) at which the
intermolecular potential vanishes and is given by

σ(êi, êj, r̂i j) = σ0

[
1 − χ

(
(êi · r̂i j)

2 + (êj · r̂i j)
2 − 2χ(êi · r̂i j)(êj · r̂i j)(êi · êj)

1 − χ2(êi · êj)2

)]−1/2

. (1.3)

The parameter χ is a function of the ratio x0 (≡σe/σs) which is defined in terms of the contact
distances when the particles are end-to-end (e) and side-by-side (s),

χ = x2
0 − 1

x2
0 + 1

. (1.4)

The orientational dependence of the potential well depth is given by a product of two functions

ε(êi, êj, r̂i j ) = ε0ε
ν(êi, êj)ε

′µ(êi, êj, r̂i j ) (1.5)
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where the scaling parameter ε0 is the well depth for the cross configuration (êi · êj = r̂i j · êi =
r̂i j · êj = 0). The first of these functions

ε(êi, êj) = [1 − χ2(êi · êj)
2]−1/2 (1.6)

favours the parallel alignment of the particle and so aids liquid crystal formations. The second
function has a form analogous to σ(êi, êj, r̂i j), i.e.

ε ′(êi, êj, r̂i j) =
[

1 − χ ′
(

(êi · r̂i j)
2 + (êj · r̂i j)

2 − 2χ ′(êi · r̂i j)(êj · r̂i j)(êi · êj)

1 − χ ′2(êi · êj)2

)]
. (1.7)

The parameter χ ′ is determined by the ratio of the well depth as

χ ′ = k ′1/µ − 1

k ′1/µ + 1
. (1.8)

Here k ′ is well-depth ratio for the side-by-side and end-to-end configuration.
The GB model contains four parameters (x0, k ′, µ, ν) that determine the anisotropy in the

repulsive and attractive forces in addition to two parameters (σ0, ε0) that scale the distance
and energy, respectively. Though x0 measures the anisotropy of the repulsive core, it also
determines the difference in the depth of the attractive well between the side-by-side and the
cross configurations. Both x0 and k ′ play important role in stabilizing the liquid crystalline
phases. The exact role of the other two parameters µ and ν are not very obvious; though they
appear to affect the anisotropic attractive forces in a subtle way.

The phase diagram found for the system interacting via the GB potential of equations (1.1)–
(1.8) exhibits isotropic, nematic and SmB phases [4, 5] for x0 = 3.0, k ′ = 5.0, µ = 2 and
ν = 1. An island of SmA is, however, found to appear in the phase diagram at a value of x0

slightly greater than 3.0 [5]. The range of SmA extends to both higher and lower temperatures as
x0 is increased. Also as x0 is increased, the isotropic–nematic (I–N) transition is seen to move to
lower density (and pressure) at a given temperature. Bates and Luckhurst [6] have investigated
the phases and phase transitions for the GB potential with x0 = 4.4, k ′ = 20.0, µ = 1
and ν = 1 using the isothermal–isobaric Monte Carlo simulations. At low pressure they
found isotropic, SmA and SmB phases but not the nematic phase. However as the pressure is
increased, the nematic phase also becomes stabilized and a sequence of I–N–SmA and SmB
was found.

In this paper we consider a fluid of long elongated molecules with length-to-breadth ratio,
x0 = 4.4, interacting via the Gay–Berne pair potential. In order to compare our results with
those of the computer simulations we take the potential parameters to be the same as those given
in [6]. The paper is organized as follows: in section 2, we describe the Percus–Yevick integral
equation theory for the calculation of the pair correlation functions of the isotropic phase
and compare our results with those found by simulations. In section 3 the density-functional
formalism has been used to locate the freezing transitions and freezing parameters for the I–N,
I–SmA and N–SmA transitions. The paper ends with a discussion given in section 4.

2. Isotropic phase: pair correlation functions

The structural information of an isotropic liquid is contained in the two particle density
distribution ρ(1, 2) as the single particle density distribution is constant independent of position
and orientation. The two-particle density distribution ρ(1, 2) measures the probability of
finding simultaneously a molecule in a volume element dr1 dΩ1 centred at (r1,Ω1) and a
second molecule in a volume element dr2 dΩ2 at (r2,Ω2). The pair correlation function
g(1, 2) is related to ρ(1, 2) as

g(1, 2) = ρ(1, 2)

ρ(1)ρ(2)
(2.1)
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where ρ(i) is the single particle density distribution. Since for the isotropic fluid ρ(1) =
ρ(2) = ρf = 〈N〉/V , where 〈N〉 is the average number of molecules in the volume V ,

ρ2
f g(r,Ω1,Ω2) = ρ(r,Ω1,Ω2) (2.2)

where r = r2 − r1. In the isotropic phase ρ(1, 2) depends only on distance |r2 − r1| = r , the
orientation of molecules with respect to each other and on the direction of vector r.

The pair distribution function g(1, 2) of the isotropic fluid is of particular interest as it
is the lowest order microscopic quantity that contains information about the translational and
orientational structures of the system and also has direct contact with intermolecular (as well
as with intramolecular) interactions. For an ordered phase, on the other hand, as shown in the
next section, most of the structural information is contained in the single particle distribution
ρ(1). In the density functional theory of freezing the single particle distribution ρ(1) of an
ordered phase is expressed in terms of the pair correlation function of the isotropic fluid (see
section 3).

The value of g(1, 2) as a function of intermolecular separation and orientation at a given
temperature and density is found either by computer simulation or by solving the Ornstein–
Zernike (OZ) equation

h(1, 2) = c(1, 2) + ρf

∫
c(1, 3)h(2, 3) d3 (2.3)

where d3 = dr3 dΩ3, and h(1, 2) = g(1, 2) − 1 and c(1, 2) are, respectively, the total and
direct pair correlation functions (DCF), using a suitable closure relation such as the Percus–
Yevick (PY) integral equation, and hypernetted chain (HNC) relations. Approximations are
introduced through these closure relations [7].

The Percus–Yevick closure relation is written in various equivalent forms. The form
adopted here is

cPY(1, 2) = f (1, 2)[g(1, 2) − c(1, 2)] (2.4)

where f (1, 2) = exp[−βu(1, 2)]−1 is the Mayer function, β = (kBT )−1 and u(1, 2) is a pair
potential of interaction. Since for the isotropic liquid DCF is an invariant pair wise function,
it has an expansion in body fixed (BF) frame in terms of basic set of rotational invariants, as

c(r12,Ω1,Ω2) =
∑
l1l2m

cl1l2 m(r12)Yl1m(Ω1)Yl2 m(Ω2) (2.5)

where m = −m. The coefficients cl1l2m(r12) are defined as

cl1l2 m(r12) =
∫

c(r12,Ω1,Ω2)Y
∗
l1m(Ω1)Y

∗
l2 m(Ω2) dΩ1 dΩ2. (2.6)

Expanding all the angle dependent functions in BF frame, the OZ equation reduces to a set of
algebraic equation in Fourier space

hl1 l2m(k) = cl1l2m(k) + (−1)m ρf

4π

∑
l3

cl1l3m(k)hl3l2m(k) (2.7)

where the summation is over allowed values of l3. The PY closure relation is expanded in
spherical harmonics in the body (or space) fixed frame. The pair correlation functions are then
found by solving these self-consistently [8].

In our earlier work [9, 10] we considered 30 harmonics in expansion of each orientation
dependent function (see equation (2.5)), i.e. the series were truncated at a value of l indices
equal to 6. Since the accuracy of the results depends on this number and as the anisotropy of
the shape taken here is larger than the earlier work, we considered 54 harmonics. The series
of each orientation dependent function was truncated at the value of l indices equal to 8. The
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Figure 1. Pair-correlation functions of the centre of mass g(r∗) for GB fluid with parameters
x0 = 4.4, k ′ = 20.0, µ = 1 and ν = 1, at η = 0.44 and T ∗ = 1.40. The solid and dashed
curves are, respectively, for 30 and 54 body-fixed harmonic coefficients. These two curves are
indistinguishable on the scale of the figure.
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Figure 2. Spherical harmonic coefficient g220(r∗) in the body-fixed frame. The curves are the
same as in figure 1.

numerical procedure for solving equation (2.7) along with the PY closer relation is the same
as discussed in [10].

In figure 1 we compare the values of g(r∗) = 1 + h000(r∗)/4π in the BF frame having 30
and 54 harmonic coefficients at T ∗ (=kBT/ε0) = 1.40 and density η (=πρfσ

3
0 x0/6) = 0.44

for x0 = 4.4, where r∗ = r/σ0 is the reduced interparticle separation. One other projection of
the pair correlation, g220(r∗), is shown in figure 2 for the same set of parameters. It is obvious
from these figures that even for fairly long molecules one gets good results with 30 harmonics.
We therefore conclude that any error in the correlation functions evaluated using the integral
equations described above is not due to truncation of series.
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Figure 3. Pair-correlation function of the centre of mass g(r∗) for GB fluid with parameters
x0 = 4.4, k ′ = 20.0, µ = 1 and ν = 1 at η = 0.36 and T ∗ = 1.80. The solid curve is our PY
result and the dashed curve is the simulation result of Bates and Luckhurst [6].

Figure 4. Spherical harmonic coefficient g220(r∗) in the body-fixed frame. The curves are the
same as in figure 3.

In figures 3 and 4 we compare the values of g(r∗) and g220(r∗), respectively, with those
obtained by computer simulations [6] for η = 0.36 and T ∗ = 1.80. The PY peak in g(r∗)
(see figure 3) is broad and of less height than one found from the simulation. This indicates
that the PY theory is unable to predict the correct orientational correlations in neighbouring
molecules. The fact that the peak in g220 is broad and oscillations at large r∗ decay faster than
those found in simulation further indicates that the PY theory underestimates the orientational
correlations present in the isotropic phase.
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3. Freezing transitions

In the density functional approach one uses the grand thermodynamic potential defined as

−W = β A − βµc

∫
dx ρ(x) (3.1)

where A is the Helmholtz free energy,µc the chemical potential and ρ(x) is a singlet distribution
function to locate the transition. It is convenient to subtract the isotropic fluid thermodynamic
potential from W and write it as [11]

	W = W − W f = 	W1 + 	W2 (3.2)

with
	W1

N
= 1

ρf V

∫
dr dΩ

{
ρ(r,Ω) ln

[
ρ(r,Ω)

ρf

]
− 	ρ(r,Ω)

}
(3.3)

and
	W2

N
= − 1

2ρf

∫
dr12 dΩ1 dΩ2 	ρ(r1,Ω1)c(r12,Ω1,Ω2)	ρ(r2,Ω2). (3.4)

Here 	ρ(x) = ρ(x) − ρf , where ρf is the density of the coexisting liquid.
The minimization of 	W with respect to arbitrary variation in the ordered phase density

subject to a constraint that corresponds to some specific feature of the ordered phase leads to

ln
ρ(r1,Ω1)

ρf
= λL +

∫
dr2 dΩ2 c(r12,Ω1,Ω2; ρf)	ρ(r2,Ω2) (3.5)

where λL is Lagrange multiplier which appears in the equation because of constraint imposed
on the minimization.

Equation (3.5) is solved by expanding the singlet distribution ρ(x) in terms of the order
parameters that characterize the ordered structures. One can use the Fourier series and Wigner
rotation matrices to expand ρ(r,Ω). Thus

ρ(r,Ω) = ρ0

∑
q

∑
lmn

Qlmn(Gq) exp(iGq · r)Dl
mn(Ω) (3.6)

where the expansion coefficients

Qlmn(Gq) = 2l + 1

N

∫
dr

∫
dΩ ρ(r,Ω) exp(−iGq · r)D∗l

mn(Ω) (3.7)

are the order parameters, Gq the reciprocal lattice vectors, ρ0 the mean number density of the
ordered phase and D∗l

mn(Ω) the generalized spherical harmonics or Wigner rotation matrices.
Note that for a uniaxial system consisting of cylindrically symmetric molecules m = n = 0
and, therefore, one has

ρ(r,Ω) = ρ0

∑
l

∑
q

Qlq exp(iGq · r)Pl(cos θ) (3.8)

and

Qlq = 2l + 1

N

∫
dr

∫
dΩρ(r,Ω) exp(−iGq · r)Pl(cos θ) (3.9)

where Pl(cos θ) is the Legendre polynomial of degree l and θ is the angle between the
cylindrical axis of a molecule and the director.

In the present calculation we consider two orientational order parameters

P̄l = Ql0

2l + 1
= 〈Pl(cos θ)〉 (3.10)
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with l = 2 and 4, one order parameter corresponding to positional order along the Z axis,

µ̄ = Q00(Gz) =
〈
cos

(
2π

d
z

)〉
(3.11)

(d , being the layer spacing) and one mixed order parameter that measures the coupling between
the positional and orientational ordering and is defined as,

τ = 1

5
Q20(Gz) =

〈
cos

(
2π

d
z

)
Pl(cos θ)

〉
. (3.12)

The angular brackets in the above equations indicate the ensemble average.
The following order parameter equations are obtained by using equations (3.5)–(3.9):

P̄l = 1

2d

∫ d

0
dz1

∫ π

0
sin θ1 dθ1 Pl(cos θ1) exp[sum] (3.13)

µ̄ = 1

2d

∫ d

0
dz1

∫ π

0
sin θ1 dθ1 cos

(
2πz1

d

)
exp[sum] (3.14)

τ = 1

2d

∫ d

0
dz1

∫ π

0
sin θ1 dθ1 P2(cos θ1) cos

(
2πz1

d

)
exp[sum] (3.15)

and the change in density at the transition is found from the relation

1 + 	ρ∗ = 1

2d

∫ d

0
dz1

∫ π

0
sin θ1 dθ1 exp[sum]. (3.16)

Here

sum = 	ρ∗Ĉ0
00 + 2µ̄ cos

(
2πz

d

)
Ĉ1

00(θ1) + P̄2Ĉ0
20(θ1) + P̄4Ĉ0

40(θ1) + 2τ cos

(
2πz

d

)
Ĉ1

20(θ1)

(3.17)

and

Ĉq
L0(θ1) =

(
2l + 1

4π

)1/2

ρf

∑
l1l

i l(2l1 + 1)1/2(2l + 1)1/2Cg(l1 Ll; 000)Pl1(cos θ1)

×
∫ ∞

0
cl1 Ll(r12) jl(Gqr12)r

2
12 dr12 (3.18)

where Cg(l1 Ll; 000) are the Clebsch–Gordan coefficients and Gq = 2π/d .
In the isotropic phase all the four order parameters become zero. In the nematic phase the

orientational order parameters P̄2 and P̄4 become non-zero but the other two parameters µ̄ and
τ remain zero. This is because the nematic phase has no long range positional order. In the
SmA phase all four order parameters are non-zero showing that the system has both long range
orientational and positional order along one direction. Equations (3.13)–(3.16) are solved
self-consistently using the values of the direct pair correlation function harmonics cl1l2 l(r)

evaluated at a given value of T ∗ and η as described in the previous section. This calculation is
repeated with different values of d , the interlayer spacing. By substituting these solutions in
equations (3.2)–(3.4) we find the grand thermodynamic potential difference between ordered
and isotropic phases, i.e.

− 	W

N
= −	ρ∗ +

1

2
	ρ∗(2 + 	ρ∗)Ĉ0

00 +
1

2
(P̄2

2 Ĉ0
22 + P̄2

4 Ĉ0
44) + µ̄2Ĉ1

00 + 2µ̄τ Ĉ1
20 + τ 2Ĉ1

22

(3.19)
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Figure 5. Phase diagram for the GB potential with parameters x0 = 4.4, k ′ = 20.0, µ = 1 and
ν = 1 using the density-functional theory.

where

Ĉq
L L ′ = (2L + 1)1/2(2L ′ + 1)1/2ρf

∑
l

i l

(
2l + 1

4π

)1/2

Cg(L L ′l; 000)

×
∫ ∞

0
cL L ′l(r12) jl(Gqr12)r

2
12 dr12. (3.20)

At a given temperature and density a phase with the lowest grand potential is taken as the stable
phase. Phase coexistence occurs at the values of ρf that makes −	W/N = 0 for the ordered
and the liquid phases. The transition from nematic to the SmA is determined by comparing the
values of −	W/N of these two phases at a given temperature and at different densities. The
value of the interlayer spacing d , is found by minimizing the grand potential with respect to d .
After selecting the value of d for a given density and temperature we locate the transition point
using the procedure outlined above. Our results are summarized in table 1 and figure 5. We
see that at low temperatures, i.e. at T ∗ = 1.2 and 1.4 the isotropic liquid freezes directly into
SmA on increasing the density. Nematic phase is not stable at these temperatures. However, at
T ∗ = 1.6 the isotropic liquid on increasing the density is found first to freeze into the nematic
phase at η = 0.49 and on further increasing the density the nematic phase transforms into the
SmA phase at η = 0.519. At high temperature, T ∗ = 1.8 the transition is found to take place
between the isotropic and nematic only for the density range considered by us.

Using the results summarized in table 1 we draw the phase digram in figure 5 in the
density–temperature plane.
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Figure 6. Phase diagram for the GB potential with parameters x0 = 4.4, k ′ = 20.0, µ = 1 and
ν = 1. The solid lines indicate the phase boundaries obtained by using the density-functional
theory while dashed lines are the simulation results of Bates and Luckhurst [6].

Table 1. Values of the order parameters at the transitions for the GB potential with x0 = 4.4, k ′ =
20, µ = ν = 1. Quantities in reduced units are d∗ = d/σ0, pressure P∗ = Pσ 3

0 /ε0, µ
∗
c = µc/ε0,

and η = πρf σ
3
0 x0/6.

T ∗ Transition η d∗ 	ρ∗ µ̄ P̄2 P̄4 τ P∗ µ∗
c

1.20 I–SmA 0.386 3.69 0.214 0.66 0.99 0.70 0.54 1.05 6.61
1.40 I–SmA 0.439 3.90 0.164 0.65 0.95 0.62 0.53 1.71 11.38
1.60 I–N 0.471 0.0 0.042 0.0 0.59 0.35 0.0 2.38 14.37

N–SmA 0.519 3.98 0.016 0.46 0.94 0.67 0.39 3.01 17.34
1.80 I–N 0.498 0.0 0.038 0.0 0.61 0.35 0.0 3.10 18.41

4. Discussions

The phase diagram shown in figure 5 is in good qualitative agreement with the one found
by computer simulations [6]. At low temperature the nematic is unstable; on increasing the
density the fluid freezes directly into the SmA phase. The nematic phase is found to stabilize in
between the isotropic and SmA phases only for T ∗ � 1.5. The quantitative agreement shown
in figure 6 in the temperature–pressure plane is, however, not so encouraging.

At a given temperature the I–N transition is found to take place at higher pressure (or
density) compared to that of simulation results. The gap seems to increase with the temperature.
Though a similar feature is seen in the N–SmA transition, the gap in this case is small compared
to that of the I–N transition. The region of existence of the nematic phase in the T –P plane
(or T –η plane) is therefore narrower than that reported in [6]. This is also reflected in the
ratio of N–SmA and I–N transition temperatures, TN−A/TI−N. For example, at P∗ = 3.0 we
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find TN−A/TI−N = 0.890, whereas the value reported in [6] is 0.795. For all the temperatures
studied by us we found the N–SmA transition to be of first order. The values of the order
parameters and the change in density at the transition are also found to be higher than those
given in [6]. For example, the change in the density for the I–SmA transition at T ∗ = 1.2 is
found to be 21.4% while the value given by Bates and Luckhurst [6] at T ∗ = 1.15 ± 0.05 is
15.9%. The orientational order parameter P̄2 at the I–N transition is found to be close to 0.60
whereas in [6] its value is close to 0.45.

All these features can easily be understood from the fact that the transitions at a given
temperature in our calculation take place at higher densities than those found in simulations.
As has already been pointed out in section 2, the PY theory underestimates the orientational
correlations. Therefore the critical correlations at which the isotropic fluid becomes unstable
is found to be higher compared to the actual value. This deficiency of the PY theory is found
to increase with increasing temperature. This also explains why in figure 6 the I–N transition
boundary is relatively more displaced than the N-SmA boundary. It is therefore necessary to
find the correlations in the isotropic phase more accurately than those given by the PY theory.
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